International Rectifier

15ETH06 15ETH06S 15ETH06-1

Hyperfast Rectifier

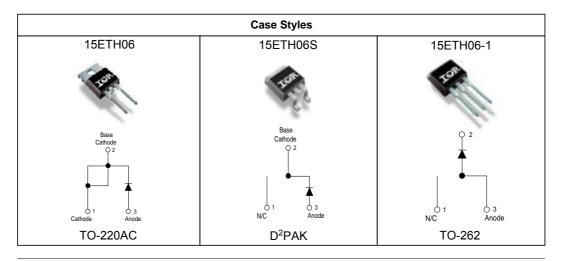
Features

- · Hyperfastfast Recovery Time
- Low Forward Voltage Drop
- · Low Leakage Current
- 175°C Operating Junction Temperature
- · Single Die Center Tap Module

t_{rr} = 22ns typ. $I_{F(AV)}$ = 15Amp V_R = 600V

Description/ Applications

State of the art Hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, Hyperfast recover time, and soft recovery.


The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC Boost stage in the AC-DC section of SMPS, inverters or as freewheeling diodes.

The IR extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

Absolute Maximum Ratings

	Parameters	Max	Units
V _{RRM}	Peak Repetitive Peak Reverse Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current @ T _C = 140°C	15	A
I _{FSM}	Non Repetitive Peak Surge Current @ T _J = 25°C	120	
I _{FM}	Peak Repetitive Forward Current	30	
T _J , T _{STG}	Operating Junction and Storage Temperatures	- 65 to 175	°C

Document Number: 93005

www.vishay.com

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions
V_{BR}, V_r	Breakdown Voltage, Blocking Voltage	600	-	-	V	Ι _R = 100μΑ
V _F	Forward Voltage	-	1.8	2.2	V	I _F = 15A, T _J = 25°C
		-	1.3	1.6	V	I _F = 15A, T _J = 150°C
I _R	Reverse Leakage Current	-	0.2	50	μA	V _R = V _R Rated
		-	30	500	μA	$T_J = 150$ °C, $V_R = V_R$ Rated
C _T	Junction Capacitance	-	20	-	pF	V _R = 600V
L _S	Series Inductance	-	8.0	-	nH	Measured lead to lead 5mm from package body

Dynamic Recovery Characteristics @ T_C = 25°C (unless otherwise specified)

zymanine meetrony emandement			0 -0 -0 -			diring of the control of			
	Parameters	Min	Тур	Max	Units	Test Conditions			
t _{rr}	Reverse Recovery Time	-	22	30	ns	$I_F = 1A$, $di_F/dt = 100A/\mu s$, $V_R = 30V$			
		-	28	35		I _F = 15A, di _F /dt = 1	00A/μs, V _R = 30V		
		-	29	-		T _J = 25°C			
		-	75	-		T _J = 125°C			
I _{RRM}	Peak Recovery Current	-	3.5	-	Α	T _J = 25°C	I _F = 15A di _F /dt = 200A/µs		
		-	7	-		T _J = 125°C	V _R = 390V		
Q _{rr}	Reverse Recovery Charge	-	57	-	nC	T _J = 25°C			
		-	300	-		T _J = 125°C			
t _{rr}	Reverse Recovery Time	-	51	-	ns		I ₌ = 15A		
I _{RRM}	Peak Recovery Current	-	20	-	Α	T _J = 125°C	di _F /dt = 800A/μs		
Q _{rr}	Reverse Recovery Charge	-	580	-	nC		V _R = 390V		

Thermal - Mechanical Characteristics

	Parameters	Min	Тур	Max	Units
TJ	Max. Junction Temperature Range	-	-	175	°C
T _{Stg}	Max. Storage Temperature Range	- 65	-	175	
R _{thJC}	Thermal Resistance, Junction to Case Per Leg	-	1.0	1.3	°C/W
R _{thJA} ①	Thermal Resistance, Junction to Ambient Per Leg	-	-	70	
R _{thCS} ^②	Thermal Resistance, Case to Heatsink	-	0.5	-	
	Weight	-	2.0	-	g
		-	0.07	-	(oz)
	Mounting Torque	6.0	-	12	Kg-cm
		5.0	-	10	lbf.in

Typical Socket MountMounting Surface, Flat, Smooth and Greased

Bulletin PD-20749 rev. E 10/06

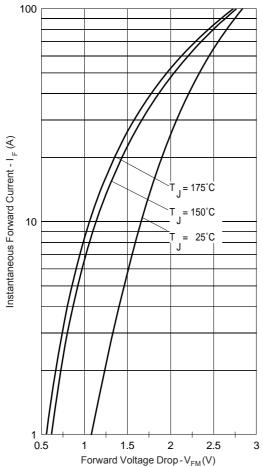


Fig.1-Typical Forward Voltage Drop Characteristics



Fig. 2-Typical Values Of Reverse Current Vs. Reverse Voltage

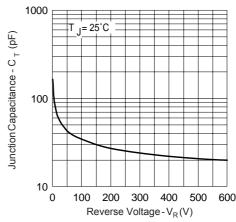


Fig.3-Typical Junction Capacitance Vs. Reverse Voltage

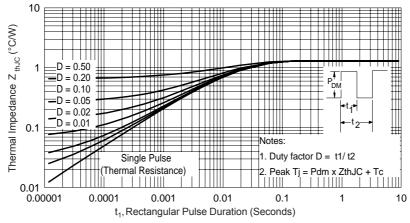


Fig. 4-Max. Thermal Impedance Z_{thJC} Characteristics

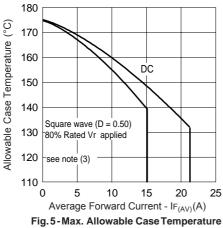


Fig. 5-Max. Allowable Case Temperature
Vs. Average Forward Current

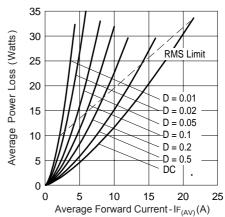


Fig. 6-Forward Power Loss Characteristics

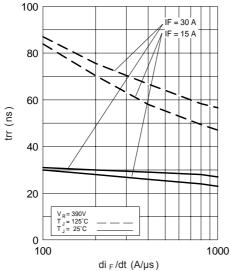


Fig. 7-Typical Reverse Recovery vs. di _F/dt

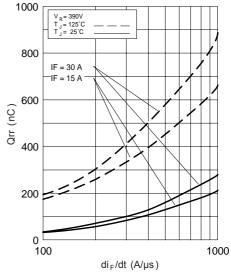


Fig. 8-Typical Stored Charge vs. di $_{\rm F}/{\rm dt}$

 $\begin{tabular}{ll} \textbf{(3)} & Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC};$\\ & Pd = Forward Power Loss = $I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6);$\\ & Pd_{REV} = Inverse Power Loss = $V_{R1} \times I_R (1 - D); I_R @ V_{R1} = rated V_R$ \\ \end{tabular}$

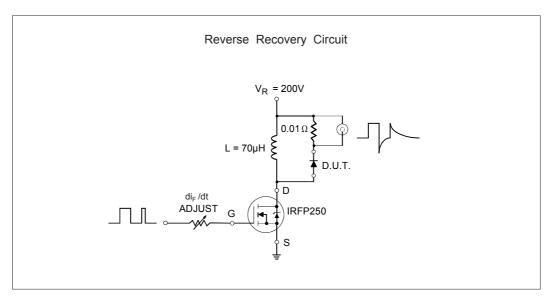


Fig. 9- Reverse Recovery Parameter Test Circuit

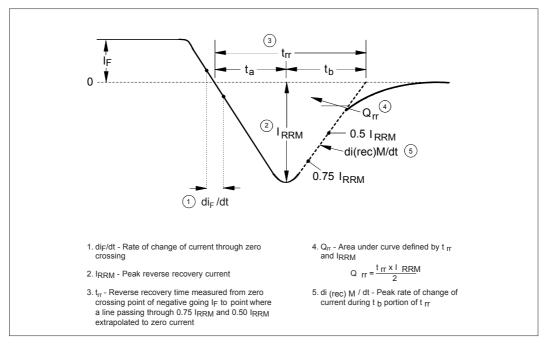
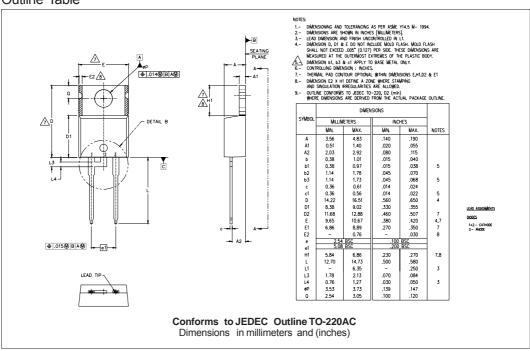
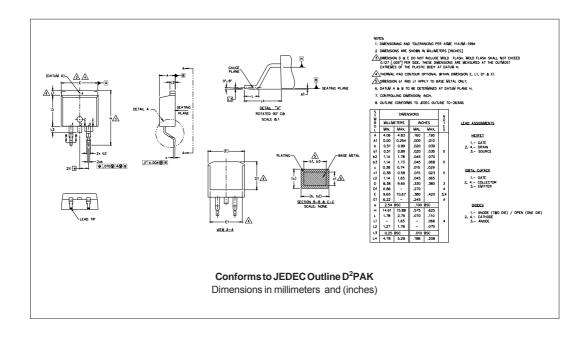
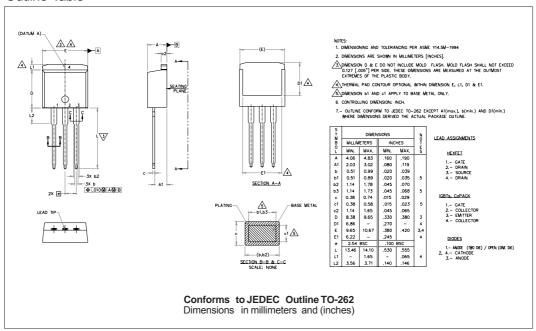
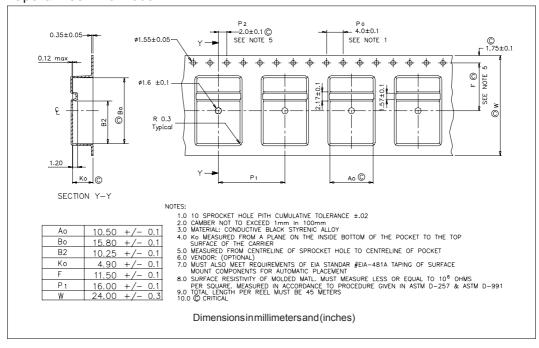
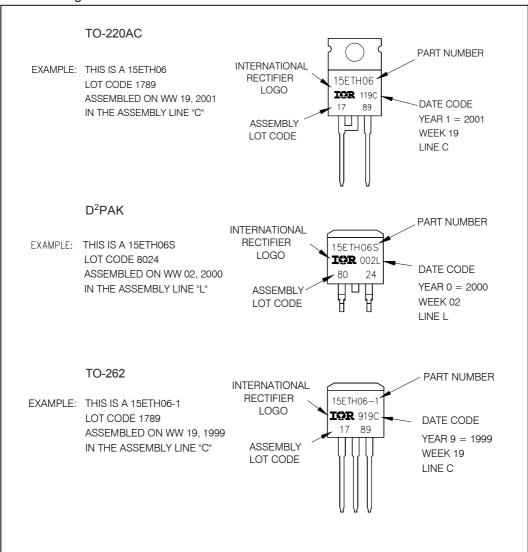




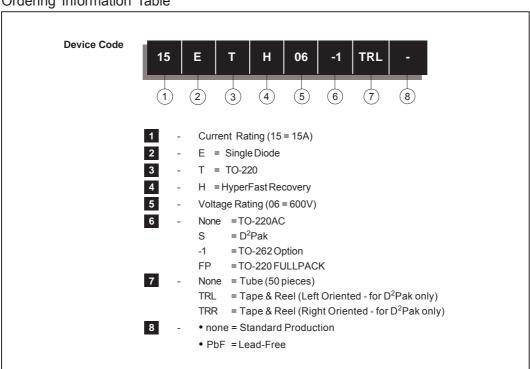
Fig. 10 - Reverse Recovery Waveform and Definitions


Document Number: 93005 www.vishay.com

Outline Table




Outline Table


Tape & Reel Information

Part Marking Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7305

10/06

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07